counter is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal.
In electronics, counters can be implemented quite easily using register-type circuits such as the flip-flop, and a wide variety of classifications exist:
Asynchronous (ripple) counter – changing state bits are used as clocks to subsequent state flip-flops
Synchronous counter – all state bits change under control of a single
clock Decade counter – counts through ten states per stage
Up/down counter – counts both up and down, under command of a control input
Ring counter – formed by a shift register with feedback connection in a ring
Johnson counter – a twisted ring counter
Cascaded counter
Each is useful for different applications. Usually, counter circuits are digital in nature, and count in natural binary. Many types of counter circuits are available as digital building blocks, for example a number of chips in the 4000 series implement different counters.
there are advantages to using a counting sequence other than the natural binary sequence—such as the binary coded decimal counter, a linear feedback shift register counter, or a Gray-code counter.
Counters are useful for digital clocks and timers, and in oven timers, VCR clocks, etc.
An asynchronous (ripple) counter is a single K-type flip-flop, with its J (data) input fed from its own inverted output. This circuit can store one bit, and hence can count from zero to one before it overflows (starts over from 0). This counter will increment once for every clock cycle and takes two clock cycles to overflow, so every cycle it will alternate between a transition from 0 to 1 and a transition from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at exactly half the frequency of the input clock. If this output is then used as the clock signal for a similarly arranged D
flip-flop (remembering to invert the output to the input), you will get another 1 bit counter that counts half as fast. Putting them together yields a two-bit counter:
can continue to add additional flip-flops, always inverting the output to its own input, and using the output from the previous flip-flop as the clock signal. The result is called a ripple counter, which can count to 2n-1 where n is the number of bits (flip-flop stages) in the counter. Ripple counters suffer from unstable outputs as the overflows "ripple" from stage to stage, but they do find frequent application as dividers for clock signals, where the instantaneous count is unimportant, but the division ratio overall is (to clarify this, a 1-bit counter is exactly equivalent to a divide by two circuit; the output frequency is exactly half that of the input when fed with a regular train of clock pulses).
The use of flip-flop outputs as clocks leads to timing skew between the count data bits, making this ripple technique incompatible with normal synchronous circuit design styles.
A decade counter is one that counts in decimal digits, rather than binary. A decade counter may have each digit binary encoded (that is, it may count in binary-coded decimal, as the 7490 integrated circuit did) or other binary encodings (such as the bi-quinary encoding of the
7490 integrated circuit). Alternatively, it may have a "fully decoded" or one-hot output code in which each output goes high in turn (the 4017 is such a circuit). The latter type of circuit finds applications in multiplexers and demultiplexers, or wherever a scanning type of behavior is useful. Similar counters with different numbers of outputs are also common. The decade counter is also known as a mod-counter.